KAS-Science Standards Revision Changes

Compare and contrast the 2015 KAS-S document and the 2022 KAS-S version for 2023-2024 implementation

Elementary Performance Expectation Change

New to 4th Grade

4-LS4-1 (moved to 4th from 3rd)

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
3-LS4-1. Analyze and interpret data from	4-LS4-1. Analyze and interpret data from
fossils to provide evidence of the organisms	fossils to provide evidence of the organisms
and the environments in which they lived long	and the environments in which they lived long
ago. [Clarification Statement: Examples of data	ago.
could include type, size, and distributions of fossil	Clarification Statement: Examples of data could
organisms. Examples of fossils and environments	include type, size, and distributions of fossil
could include marine fossils found on dry land,	organisms. Examples of fossils and environments
tropical plant fossils found in Arctic areas, and	could include marine fossils found on dry land,
fossils of extinct organisms.] [Assessment	tropical plant fossils found in Arctic areas, and
Boundary: Assessment does not include	fossils of extinct organisms. Assessment
identification of specific fossils or present plants	Boundary: Assessment does not include
and animals. Assessment is limited to major fossil	identification of specific fossils or present plants
types and relative ages.]	and animals. Assessment is limited to major fossil
	types and relative ages.

Elementary Modifications to Performance Expectations

Kindergarten - K-PS2-1 Clarification Statement modified

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
K-PS2-1. Plan and conduct an investigation to	K-PS2-1. Plan and conduct an investigation to
compare the effects of different strengths or	compare the effects of different strengths or
different directions of pushes and pulls on the	different directions of pushes and pulls on the
motion of an object. [Clarification Statement:	motion of an object.
Examples of pushes or pulls could include a string	Clarification Statement: Examples of pushes or
attached to an object being pulled, a person	pulls could include a string attached to an object
pushing an object, a person stopping a rolling ball,	being pulled, <mark>swings on a playground</mark> , a person
and two objects colliding and pushing on each	pushing an object, a person stopping a rolling ball,
other.] [Assessment Boundary: Assessment is	and two objects colliding and pushing on each
limited to different relative strengths or different	other. Assessment Boundary: Assessment is
directions, but not both at the same time.	limited to different relative strengths or different
Assessment does not include non-contact pushes	directions, but not both at the same time.
or pulls such as those produced by magnets.]	Assessment does not include non-contact pushes
	or pulls such as those produced by magnets.

K-LS1-1 Clarification Statement

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
--	---------------------------------------

K-LS1-1. Use observations to describe patterns of what plants and animals (including humans) need to survive. [Clarification	K-LS1-1. Use observations to describe patterns of what plants and animals (including humans) need to survive.
Statement: Examples of patterns could include that animals need to take in food but plants do not; the different kinds of food needed by different	Clarification Statement: Examples of patterns could include that animals need to take in food but plants make their food, the different kinds of food
types of animals; the requirement of plants to have light; and that all living things need water.]	needed by different types of animals, the requirement of plants to have light, and that all living things need water. Assessment Boundary: None provided.

modified

1st Grade - No modifications

2nd Grade - 2-LS4-1 New CCC added (Patterns)

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
2-LS4-1. Make observations of plants and	2-LS4-1. Make observations of plants and
animals to compare the diversity of life in	animals to compare the diversity of life in
different habitats. [Clarification Statement:	different habitats.
Emphasis is on the diversity of living things in	Clarification Statement: Emphasis is on the
each of a variety of different habitats.]	diversity of living things in each of a variety of
[Assessment Boundary: Assessment does not	different habitats. Assessment Boundary:
include specific animal and plant names in	Assessment does not include specific animal and
specific habitats.]	plant names in specific habitats.
No CCC	Patterns: Patterns in the natural world can be
	observed.

3rd Grade - 3-PS2-4 New CCC added (Cause and Effect)

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
3-PS2-4. Define a simple design problem that can be solved by applying scientific ideas about magnets.* [Clarification Statement: Examples of problems could include constructing a latch to keep a door shut and creating a device to keep two moving objects from touching each other.]	3-PS2-4. Define a simple design problem that can be solved by applying scientific ideas about magnets.* Clarification Statement: Examples of problems could include constructing a latch to keep a door shut and creating a device to keep two moving objects from touching each other. Assessment Boundary: None provided.
No CCC	Cause and Effect: Identify and test causal relationships and use these relationships to explain change.

4th Grade -

4-PS4-1 Clarification Statement modified-this was left out- it is not a major change though

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
4-PS4-1. Develop a model of waves to describe	4-PS4-1. Develop a model of waves to describe
patterns in terms of amplitude and wavelength	patterns in terms of amplitude and wavelength

and that waves can cause objects to move.	and that waves can cause objects to move.
[Clarification Statement: Examples of models	Clarification Statement: Examples of models could
could include diagrams, analogies, and physical	include diagrams, analogies, and physical models
models using wire to illustrate wavelength and	to illustrate wavelength and amplitude of waves.
amplitude of waves.] [Assessment Boundary:	Assessment Boundary: Assessment does not
Assessment does not include interference effects,	include interference effects, electromagnetic
electromagnetic waves, non-periodic waves, or	waves, non-periodic waves, or quantitative
quantitative models of amplitude and wavelength.]	models of amplitude and wavelength.

4-PS4-2 Clarification statement added

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
4-PS4-2. Develop a model to describe that light	4-PS4-2. Develop a model to describe that light
reflecting from objects and entering the eye	reflecting from objects and entering the eye
allows objects to be seen. [Assessment	allows objects to be seen. Clarification
Boundary: Assessment does not include	Statement: Examples of models could include
knowledge of specific colors reflected and seen,	diagrams, analogies, and physical models that
the cellular mechanisms of vision, or how the	illustrate light reflecting from objects and entering
retina works.]	the eye. Assessment Boundary: Assessment does
	not include knowledge of specific colors reflected
	and seen, the cellular mechanisms of vision, or
	how the retina works.

4-PS4-3 New DCI added (ETS1.C was listed as secondary previously, now listed as a 2nd DCI)

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
4-PS4-3. Generate and compare multiple	4-PS4-3. Generate and compare multiple
solutions that use patterns to transfer	solutions that use patterns to transfer
information.* [Clarification Statement: Examples	information. Clarification Statement: Examples of
of solutions could include drums sending coded	solutions could include drums sending coded
information through sound waves, using a grid of	information through sound waves, using a grid of
1's and 0's representing black and white to send	1's and 0's representing black and white to send
information about a picture, and using Morse code	information about a picture, and using Morse code
to send text.]	to send text. Assessment Boundary: None
DCI	provided.
PS4.C: Information Technologies and	DCI
Instrumentation Digitized information	PS4.C: Information Technologies and
transmitted over long distances without significant	Instrumentation Patterns can encode, send,
degradation. High-tech devices, such as	receive, and decode information.
computers or cell phones, can receive and	ETS1.C: Optimizing the Design Solution Different
decode information— convert it from digitized	solutions need to be tested in order to determine
form to voice—and vice versa. (4-PS4-3) ETS1.C:	which of them best solves the problem, given the
Optimizing The Design Solution Different	criteria and the constraints. (No longer secondary)
solutions need to be tested in order to determine	
which of them best solves the problem, given the	
criteria and the constraints. (secondary to 4-PS4-	
3)	

4-ESS3-1 Clarification Statement modified

Previous 2015 KAS for Science Document C	Current 2022 KAS for Science Document
--	---------------------------------------

4-ESS3-1. Obtain and combine information to	4-ESS3-1. Obtain and combine information to
describe that energy and fuels are derived	describe that energy and fuels are derived
from natural resources and their uses affect	from natural resources and that their uses
the environment. [Clarification Statement:	affect the environment. Clarification Statement:
Examples of renewable energy resources could	Natural resources are derived from both
include wind energy, water behind dams, and	renewable energy (e.g., wind, water, biomass)
sunlight; nonrenewable energy resources are	and non-renewable energy (e.g., fossil fuels and
fossil fuels and fissile materials. Examples of	fissile materials). Examples of environmental
environmental effects could include loss of	offects could include lace of babitat, soil erasion
environmental effects could include loss of habitat due to dams, loss of habitat due to surface mining, and air pollution from burning of fossil fuels.]	effects could include loss of habitat, soil erosion, or air pollution. Assessment Boundary: None provided.

5th Grade - 5-ESS3-1 Performance Expectation modified new Clarification Statement added, new DCI added (ETS1.A Defining and Delimiting Engineering Problems)

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
5-ESS3-1. Obtain and combine information	5-ESS3-1. Obtain and combine information
about ways individual communities use	about solutions individual communities use to
science ideas to protect the Earth's resources	protect the Earth's resources and
and environment.	environment.* Clarification Statement: Examples
Clarification- None provided	could include agricultural solutions to prevent
Assessment Boundary-None provided	fertilizer runoff or using goats to control invasive
DCI-	plant species. Assessment Boundary: None
ESS3.C: Human Impacts on Earth Systems	provided.
Human activities in agriculture, industry, and	DCI-
everyday life have had major effects on the land,	ESS3.C: Human Impacts on Earth Systems
vegetation, streams, ocean, air, and even outer	Human activities in agriculture, industry, and
space. But individuals and communities are doing	everyday life have had major effects on the land,
things to help protect Earth's resources and	vegetation, streams, oceans, air, and even outer
environments.	space. But individuals and communities are doing
	things to help protect Earth's resources and
	environments.
	ETS1.A: Defining and Delimiting Engineering
	Problems Possible solutions to a problem are
	limited by available materials and resources
	(constraints). The success of a designed solution
	is determined by considering the desired features
	of a solution (criteria). Different proposals for
	solutions can be compared on the basis of how
	well each one meets the specified criteria for
	success or how well each takes the constraints
	into account.
<u></u>	

Middle School Performance Expectation Changes (new grades)

New to 6th grade

6-PS2-4 (moved to 6th from 7th)

07-PS2-4. Construct and present arguments	6-PS2-4. Construct and present arguments
using evidence to support the claim that	using evidence to support the claim that
gravitational interactions are attractive and	gravitational interactions are attractive and
depend on the masses of interacting objects.	depend on the masses of interacting objects.
[Clarification Statement: Examples of evidence for	Clarification Statement: Examples of evidence for
arguments could include data generated from	arguments could include data generated from
simulations or digital tools; and charts displaying	simulations or digital tools and also charts
mass, strength of interaction, distance from the	displaying mass, strength of interaction, distance
Sun, and orbital periods of objects within the solar	from the sun, and orbital periods of objects within
system.] [Assessment Boundary: Assessment	the solar system. Assessment Boundary:
does not include Newton's Law of Gravitation or	Assessment does not include Newton's law of
Kaslor's Laws 1	arguitation or Konlor's laws
Kepler's Laws.]	gravitation or Kepler's laws.

6-LS1-6 (moved to 6th from 7th)

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
07-LS1-6. Construct a scientific explanation	6-LS1-6. Construct a scientific explanation
based on evidence for the role of	based on evidence for the role of
photosynthesis in the cycling of matter and	photosynthesis in the cycling of matter and
flow of energy into and out of organisms.	flow of energy into and out of organisms.
[Clarification Statement: Emphasis is on tracing	Clarification Statement: Emphasis is on tracing
movement of matter and flow of energy.]	movement of matter and flow of energy.
[Assessment Boundary: Assessment does not	Assessment Boundary: Assessment does not
include the biochemical mechanisms of	include the biochemical mechanisms of
photosynthesis.]	photosynthesis.

New to 7th grade

7-PS2-2 (moved to 7th from 6th)

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
06-PS2-2. Plan an investigation to provide	7-PS2-2. Plan an investigation to provide
evidence that the change in an object's motion	evidence that the change in an object's motion
depends on the sum of the forces on the	depends on the sum of the forces on the
object and the mass of the object. [Clarification	object and the mass of the object. Clarification
Statement: Emphasis is on balanced (Newton's	Statement: Emphasis is on balanced (Newton's
First Law) and unbalanced forces in a system,	first law) and unbalanced forces in a system,
qualitative comparisons of forces, mass and	qualitative comparisons of forces, mass and
changes in motion (Newton's Second Law), frame	changes in motion (Newton's second law), frame
of reference, and specification of units.]	of reference, and specification of units.
[Assessment Boundary: Assessment is limited to	Assessment Boundary: Assessment is limited to
forces and changes in motion in one-dimension in	forces and changes in motion in one-dimension in
an inertial reference frame, and to change in one	an inertial reference frame and to change in one
variable at a time. Assessment does not include	variable at a time. Assessment does not include
the use of trigonometry.]	the use of trigonometry.

7-PS3-1 (moved to 7th from 8th)

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
--	---------------------------------------

08-PS3-1. Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. [Clarification Statement: Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks.	7-PS3-1. Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. Clarification Statement: Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks
different speeds, rolling different sizes of rocks downhill, and getting hit by a wiffle ball versus a tennis ball.]	different speeds, rolling different sizes of rocks downhill, and getting hit by a whiffle ball versus a tennis ball. Assessment Boundary: None
	provided.

7-LS1-8 (moved to 7th from 8th)

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
08-LS1-8. Gather and synthesize information	7-LS1-8. Gather and synthesize information
that sensory receptors respond to stimuli by	that sensory receptors respond to stimuli by
sending messages to the brain for immediate	sending messages to the brain for immediate
behavior or storage as memories. [Assessment	behavior or storage as memories. Clarification
Boundary: Assessment does not include	Statement: None provided. Assessment
mechanisms for the transmission of this	Boundary: Assessment does not include
information.]	mechanisms for the transmission of this
	information.

New to 8th grade

8-PS1-3 (moved to 8th from 6th)

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
06-PS1-3. Gather and make sense of	8-PS1-3. Gather and make sense of
information to describe that synthetic	information to describe that synthetic
materials come from natural resources and	materials come from natural resources and
impact society. [Clarification Statement:	impact society. Clarification Statement:
Emphasis is on natural resources that undergo a	Emphasis is on natural resources that undergo a
chemical process to form the synthetic material.	chemical process to form the synthetic material.
Examples of new materials could include new	Examples of new materials could include new
medicine, foods, and alternative fuels.]	medicine, foods, and alternative fuels.
[Assessment Boundary: Assessment is limited to	Assessment Boundary: Assessment is limited to
qualitative information.]	qualitative information.

8-LS1-4 (moved to 8th from 7th)

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
07-LS1-4. Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal	8-LS1-4. Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal
behaviors and specialized plant structures affect the probability of successful	behaviors and specialized plant structures affect the probability of successful
reproduction of animals and plants	reproduction of animals and plants
respectively. [Clarification Statement: Examples	respectively. Clarification Statement: Examples

of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for
breeding. Examples of animal behaviors that affect the probability of plant reproduction could
include transferring pollen or seeds and creating
conditions for seed germination and growth. Examples of plant structures could include bright
flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that
transfer pollen, and hard shells on nuts that squirrels bury. Assessment Boundary: None provided.

8-LS1-5 (moved to 8th from 7th)

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
07-LS1-5. Construct a scientific explanation	8-LS1-5. Construct a scientific explanation
based on evidence for how environmental and	based on evidence for how environmental and
genetic factors influence the growth of	genetic factors influence the growth of
organisms. [Clarification Statement: Examples of	organisms. Clarification Statement: Examples of
local environmental conditions could include	local environmental conditions could include
availability of food, light, space, and water.	availability of food, light, space, and water.
Examples of genetic factors could include large	Examples of genetic factors could include large
breed cattle and species of grass affecting growth	breed cattle and species of grass affecting growth
of organisms. Examples of evidence could include	of organisms. Examples of evidence could include
drought decreasing plant growth, fertilizer	drought decreasing plant growth, fertilizer
increasing plant growth, different varieties of plant	increasing plant growth, different varieties of plant
seeds growing at different rates in different	seeds growing at different rates in different
conditions, and fish growing larger in large ponds	conditions, and fish growing larger in large ponds
than they do in small ponds.] [Assessment	than they do in small ponds. Assessment
Boundary: Assessment does not include genetic	Boundary: Assessment does not include genetic
mechanisms, gene regulation, or biochemical	mechanisms, gene regulation, or biochemical
processes.]	processes.

Middle School Modifications to Performance Expectations

6th Grade - 6-ESS2-2 Performance Expectation Modified, Clarification Statement Modified, new

DCI (ESS2.E Biogeology)

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
06-ESS2-2. Construct an explanation based on	6-ESS2-2. Construct an explanation based on
evidence for how geoscience processes have	evidence for how <mark>biological and</mark> geoscience
changed Earth's surface at varying time and	processes have changed Earth's surface at
spatial scales. [Clarification Statement:	varying time and spatial scales. Clarification
Emphasis is on how processes change Earth's	Statement: Emphasis is on how processes
surface at time and spatial scales that can be	change Earth's surface at time and spatial scales
large (such as slow plate motions or the uplift of	that can be large (such as slow plate motions or
large mountain ranges) or small (such as rapid	the uplift of large mountain ranges) or small (such

landslides or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events. Examples of geoscience processes include surface weathering and deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate.] DCI- ESS2.A: Earth's Materials and Systems The planet's systems interact over scales that range from microscopic to global in size, and they operate over fractions of a second to billions of years. These interactions have shaped Earth's history and will determine its future. ESS2.C: The Roles of Water in Earth's Surface Processes Water's movements—both on the land and underground—cause weathering and erosion, which change the land's surface features and create underground formations.	as rapid landslides, biological or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events. Examples of geoscience processes include surface weathering and deposition caused by the movements of water, ice, and wind. Examples of biological processes could include the decomposition of living organisms resulting in soil formation, the effect of vegetation on erosion, and the impact of beaver dams on the natural flow of waterways. Emphasis is on biological processes and geoscience processes that shape local geographic features, where appropriate. Assessment Boundary: None provided. DCI- ESS2.A: Earth's Materials and Systems The planet's systems interact over scales that range from microscopic to global in size, and they operate over fractions of a second to billions of years. These interactions have shaped Earth's history and will determine its future. ESS2.C: The Roles of Water in Earth's Surface Processes Water's movements—both on the land and underground—cause weathering and erosion, which change the land's surface features and create underground formations. ESS2.E: Biogeology The evolution and proliferation of living things over geological time have in turn changed the rates of weathering and erosion of land surfaces, altered the composition
	of Earth's soils and atmosphere, and affected the
	distribution of water in the hydrosphere.

7th Grade - 7-PS4-3 Performance Expectation Modified, new DCI (new element of PS4.C is

identified)

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
07-PS4-3. Integrate qualitative scientific and	7-PS4-3. Integrate qualitative scientific and
technical information to support the claim that	technical information to support the claim that
digitized signals are a more reliable way to	designed technologies can transmit digital
encode and transmit information than analog	information as wave pulses.
signals. [Clarification Statement: Emphasis is on	Clarification Statement: Emphasis is on a basic
a basic understanding that waves can be used for	understanding that waves can be used for
communication purposes. Examples could include	communication purposes. Examples could include
using fiber optic cable to transmit light pulses,	using fiber optic cable to transmit light pulses,
radio wave pulses in wifi devices, and conversion	radio wave pulses in Wi-Fi devices, and
of stored binary patterns to make sound or text on	conversion of stored binary patterns to make
a computer screen.] [Assessment Boundary:	sound or text on a computer screen. Assessment
Assessment does not include binary counting.	Boundary: Assessment does not include binary
Assessment does not include the specific	counting. Assessment does not include the
mechanism of any given device.]	specific mechanism of any given device.

DCI-	DCI-
PS4.C: Information Technologies and	PS4.C: Information Technologies and
Instrumentation Digitized signals (sent as wave	Instrumentation Technologies allow us to detect
pulses) are a more reliable way to encode and	and interpret waves and signals in waves that
transmit information.	cannot be detected directly.

7-LS1-1 CS Modified

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
07-LS1-1. Conduct an investigation to provide evidence that living things are made of cells, either one cell or many different numbers and	7-LS1-1. Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and
types of cells. [Clarification Statement: Emphasis is on developing evidence that living things are made of cells, distinguishing between living and non-living cells, and understanding that living things may be made of one cell or many and varied cells.]	types of cells. Clarification Statement: Emphasis is on developing evidence that living things are made of cells, distinguishing between living and non-living things, and understanding that living things may be made of one cell or many and varied cells. Assessment Boundary: None provided.

8th Grade - 8-LS2-4 new DCI (LS2.D Social Interactions and Group Behavior),

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
08-LS2-4. Construct an argument supported	8-LS2-4. Construct an argument supported by
by empirical evidence that changes to	empirical evidence that changes to physical or
physical or biological components of an	biological components of an ecosystem affect
ecosystem affect populations. [Clarification	populations. Clarification Statement: Emphasis is
Statement: Emphasis is on recognizing patterns in	on recognizing patterns in data and making
data and making warranted inferences about	warranted inferences about changes in
changes in populations, and on evaluating	populations, and on evaluating empirical evidence
empirical evidence supporting arguments about	supporting arguments about changes to
changes to ecosystems.]	ecosystems. Assessment Boundary: None
DCI-	provided.
LS2.C: Ecosystem Dynamics, Functioning,	DCI-
and Resilience Ecosystems are dynamic in	LS2.C: Ecosystem Dynamics, Functioning,
nature; their characteristics can vary over time.	and Resilience Ecosystems are dynamic in
Disruptions to any physical or biological	nature; their characteristics can vary over time.
component of an ecosystem can lead to shifts in	Disruptions to any physical or biological
all its populations.	component of an ecosystem can lead to shifts in
	all its populations
	LS2.D: Social Interactions and Group Behavior
	Groups often dissolve if they no longer function to
	<mark>meet individuals' needs, if dominant members</mark>
	lose their place, or if other key members are
	removed from the group through death, predation,
	or exclusion by other members.
8-I S4-3 Performance Expectation modified	

8-LS4-3 Performance Expectation modified

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
08-LS4-3. Analyze <mark>displays of pictorial</mark> data to	8-LS4-3. Analyze data to compare patterns in the
compare patterns <mark>of similarities</mark> in the	embryological development across multiple

development.]

8-ESS3-2 Performance Expectation modified

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
08-ESS3-2. Analyze and interpret data on	8-ESS3-2. Analyze and interpret data to
natural hazards to forecast future catastrophic	forecast future catastrophic events to inform
events and inform the development of	the development of technologies to mitigate
technologies to mitigate their effects.	the effects of natural hazards. Clarification
[Clarification Statement: Emphasis is on how	Statement: Emphasis is on how some natural
some natural hazards, such as volcanic eruptions	hazards, such as volcanic eruptions and severe
and severe weather, are preceded by phenomena	weather, are preceded by phenomena that allow
that allow for reliable predictions, but others, such	for reliable predictions, but others, such as
as earthquakes, occur suddenly and with no	earthquakes, occur suddenly and with no notice,
notice, and thus are not yet predictable. Examples	and thus are not yet predictable. Examples of
of natural hazards can be taken from interior	natural hazards can be taken from interior
processes (such as earthquakes and volcanic	processes (such as earthquakes and volcanic
eruptions), surface processes (such as mass	eruptions), surface processes (such as mass
wasting and tsunamis), or severe weather events	wasting and tsunamis), or severe weather events
(such as hurricanes, tornadoes, and floods).	(such as hurricanes, tornadoes, and floods).
Examples of data can include the locations,	Examples of data can include the locations,
magnitudes, and frequencies of the natural	magnitudes, and frequencies of the natural
hazards. Examples of technologies can be global	hazards. Examples of technologies can be global
(such as satellite systems to monitor hurricanes or	(such as satellite systems to monitor hurricanes or
forest fires) or local (such as building basements	forest fires) or local (such as building basements
in tornado-prone regions or reservoirs to mitigate	in tornado prone regions or reservoirs to mitigate
droughts).]	droughts). Assessment Boundary: None provided.

High School Modifications to Performance Expectations

HS-PS1-3 Performance Expectation and Clarification Statement modified

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
HS-PS1-3. Plan and conduct an investigation	HS-PS1-3. Plan and conduct an investigation
to gather evidence to compare the structure of	to gather evidence to compare the structure of
substances <mark>at the bulk scale</mark> to infer the	substances <mark>at the macro and micro scale</mark> to
strength of electrical forces between particles.	infer the strength of electrical forces between
[Clarification Statement: Emphasis is on	particles. Clarification Statement: Emphasis is on
understanding the strengths of forces between	understanding the strengths of forces between
particles, <mark>and</mark> -not on naming specific	particles, not on naming specific intermolecular
intermolecular forces (such as dipole-dipole).	forces (such as dipole-dipole). Examples of

Examples of particles could include ions, atoms, molecules, and networked materials (such as graphite). Examples of bulk properties of substances could include the melting point and boiling point, vapor pressure, and surface tension.] [Assessment Boundary: Assessment does not include Raoult's law calculations of vapor pressure.]	particles could include ions, atoms, molecules, and networked materials (such as graphite). Examples of properties of substances could include the melting point and boiling point, vapor pressure, and surface tension. Assessment Boundary: Assessment does not include Raoult's law calculations of vapor pressure.
--	--

HS-PS3-1 Clarification Statement modified

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
HS-PS3-1. Create a computational model to	HS-PS3-1. Create a computational model to
calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy	calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy
flows in and out of the system are known.	flows in and out of the system are known.
[Clarification Statement: Emphasis is on	Clarification Statement: Emphasis is on explaining
explaining the meaning of mathematical	the meaning of mathematical expressions
expressions used in the model.] [Assessment	modeled in common phenomena. Assessment
Boundary: Assessment is limited to basic	Boundary: Assessment is limited to basic
algebraic expressions or computations; to	algebraic expressions or computations; to
systems of two or three components; and to	systems of two or three components; and to
thermal energy, kinetic energy, and/or the	thermal energy, kinetic energy, and/or the
energies in gravitational, magnetic, or electric	energies in gravitational, magnetic, or electric
fields.]	fields.

HS-LS1-2 new DCI, CCC modified- no evidence of this

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
HS-LS1-2. Develop and use a model to	HS-LS1-2. Develop and use a model to
illustrate the hierarchical organization of	illustrate the hierarchical organization of
interacting systems that provide specific	interacting systems that provide specific
functions within multicellular organisms.	functions within multicellular organisms.
[Clarification Statement: Emphasis is on functions	Clarification Statement: Emphasis is on functions
at the organism system level such as nutrient	at the organism system level such as nutrient
uptake, water delivery, and organism movement	uptake, water delivery, organism movement and
in response to neural stimuli. An example of an	behavioral response to neural stimuli. An example
interacting system could be an artery depending	of an interacting system could be an artery
on the proper function of elastic tissue and	depending on the proper function of elastic tissue
smooth muscle to regulate and deliver the proper	and smooth muscle to regulate and deliver the
amount of blood within the circulatory system.]	proper amount of blood within the circulatory
[Assessment Boundary: Assessment does not	system. Assessment Boundary: Assessment does
include interactions and functions at the molecular	not include interactions and functions at the
or chemical reaction level.]	molecular or chemical reaction level.
DCI-	DCI-
LS1.A: Structure and Function	LS1.A: Structure and Function Multicellular
Multicellular organisms have a hierarchical	organisms have a hierarchical structural
structural organization, in which any one system is	organization in which any one system is made up
made up of numerous parts and is itself a	of numerous parts and is itself a component of the
component of the next level.	next level.

within and between systems at different scales. punishments. The integration of the systems is important for the successful interpretation of inputs and generation of behaviors in response to them, CCC- Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions— including energy, matter, and information flows— within and between systems at different scales.	CCC- Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions— including energy, matter, and information flows— within and between systems at different scales.	inputs and generation of behaviors in response to them. CCC- Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions— including energy, matter, and information flows—
--	--	--

HS-LS1-3 new DCI

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
HS-LS1-3. Plan and conduct an investigation	HS-LS1-3. Plan and conduct an investigation
to provide evidence that feedback	to provide evidence that feedback
mechanisms maintain homeostasis.	mechanisms maintain homeostasis.
[Clarification Statement: Examples of	Clarification Statement: Examples of
investigations could include heart rate response to	investigations could include heart rate response to
exercise, stomate response to moisture and	exercise, stomate response to moisture and
temperature, and root development in response to	temperature, and root development in response to
water levels.] [Assessment Boundary:	water levels. Assessment Boundary: Assessment
Assessment does not include the cellular	does not include the cellular processes involved in
processes involved in the feedback mechanism.]	the feedback mechanism.
DCI-	DCI-
LS1.A: Structure and Function	LS1.A: Structure and Function Feedback
Feedback mechanisms maintain a living system's internal conditions within certain limits and	mechanisms maintain a living system's internal conditions within certain limits and mediate
mediate behaviors, allowing it to remain alive and	behaviors, allowing it to remain alive and
functional even as external conditions change	functional even as external conditions change
within some range. Feedback mechanisms can	within some range. Feedback mechanisms can
encourage (through positive feedback) or	encourage (through positive feedback) or
discourage (negative feedback) what is going on	discourage (negative feedback) what is going on
inside the living system.	inside the living system.
	LS1.D: Information Processing Some circuits give
	rise to emotions and memories that motivate
	organisms to seek rewards, avoid punishments,
	develop fears, or form attachments to members of
	their own species and, in some cases, to
	individuals of other species (e.g., mixed herds of
	mammals, mixed flocks of birds). The integrated
	functioning of all parts of the brain is important for
	successful interpretation of inputs and generation
	of behaviors in response to them.

HS-ESS1-4 Clarification Statement modified.

Previous 2015 KAS for Science Document	Current 2022 KAS for Science Document
HS-ESS1-4. Use mathematical or	HS-ESS1-4. Use mathematical or
computational representations to predict the	computational representations to predict the
motion of orbiting objects in the solar system.	motion of orbiting objects in the solar system.
[Clarification Statement: Emphasis is on	Clarification Statement: Emphasis is on
Newtonian gravitational laws governing orbital	Newtonian gravitational laws and Kepler's Laws
motions, which apply to human-made satellites as	governing orbital motions, which apply to human-
well as planets and moons.] [Assessment	made satellites as well as planets and moons.
Boundary: Mathematical representations for the	Assessment Boundary: Mathematical
gravitational attraction of bodies and Kepler's	representations for the gravitational attraction of
Laws of orbital motions should not deal with more	bodies and Kepler's Laws of orbital motions
than two bodies, nor involve calculus.]	should not deal with more than two bodies, nor
	involve calculus.